Screening the Discrepancy Function of a Computer Model arXiv:2109.02726

Pierre Barbillon¹, Anabel Forte² and Rui Paulo³

OBayes 2022 September 6 – 10, 2022 | Santa Cruz, CA

¹ AgroParisTech, ² Universitat de Valencia, ³ CEMAPRE/REM and ISEG Universidade de Lisboa

Motivation

"All models are wrong but some of them are useful"

George E.P. Box

Computer or mathematical models:

Let $y^{\mathcal{M}}(\mathbf{x}, \theta)$ denote the output of a real-valued, <u>deterministic</u> function, which implements a mathematical model aimed at reproducing a real phenomenon

- x = (x₁..., x_p)[⊤] are input variables describing controllable or observable aspects of the system (environmental variables)
- θ = (θ₁,...,θ_k)[⊤] are model parameters which are unknown in the context of physical experiments

Motivating example

Example: A photovoltaic plant (PVP)

Imagine a photovoltaic plant with 12 panels connected together.

Its power production may depend on some metheorological conditions, but which and how?

 A mathematical model (MM) has been developed by experts to mimic the electrical behavior of a PVP:

$$y^M$$
: $(\mathbf{x}, \boldsymbol{ heta}) \in \mathbb{R}^4 imes \mathbb{R}^6 \mapsto \mathbb{R}^4$

- Metheorological variables $\mathbf{x} = (t, I_g, I_d, T_e)^T$:
 - *t* the UTC time since the beginning of the year,
 - Ig the global irradiation of the sun,
 - I_d the diffuse irradiation of the sun and
 - *T_e* the ambient temperature.
- $y^{M}(\mathbf{x}, \boldsymbol{\theta})$: the instantaneous power following the MM.
- Carmassi et al. (2019)

- Positive power production was recorded: y^F.
- Over two months (August and September).
- We just take an observation each 5 min (recorded every 10 sec).
- It is reality y^R plus error

- Actual values for the covariates in **x** were also collected.
- Also, the temperature on the panel is recorded T_p.
- All the input and output data were normalized in [0,1]

Example: Experimental Data

- Understand if the MM $y^{M}(\mathbf{x}, \theta)$ is good enough to model reality y^{R} :
 - If the effect of metheorological covariates is well modelled through $y^{\mathcal{M}}$.
 - If the temperature of the panel (not in the model) also affects the result.
- Notice that we just have field data y^F .
- In the world of MMs this process is usually known as screening.

Statistical Framework

Field experiments

Let x_1, \ldots, x_n the configurations / observed values at which the field experiments are conducted;

That is,

$$\mathbf{x}_i = (x_{1i}, \ldots, x_{p,i})^\top$$

denotes the values of the input variables that have been set for the *i*th experiment (or that will be observed as part of that experiment, if corresponding to environmental variables)

Following Kennedy and O'Hagan (2001), we model the field data as

$$y^{F}(\mathbf{x}_{i}) = y^{M}(\mathbf{x}_{i}, \boldsymbol{\theta}) + \delta(\mathbf{x}_{i}) + \varepsilon_{i}$$

Model discrepancy

$$y^{F}(\mathbf{x}_{i}) = y^{M}(\mathbf{x}_{i}, \boldsymbol{\theta}) + \delta(\mathbf{x}_{i}) + \varepsilon_{i}$$

- ε_i are independent $N(0, \sigma_0^2)$ random variables which represent measurement error
- heta denotes the unknown value of the vector of model parameters
- δ(x_i) denotes the discrepancy function and is meant to account for model inadequacy

Gaussian process prior

We place a Gaussian process prior on $\delta(\cdot)$:

$$\delta(\cdot) \mid \sigma^2, \psi \sim GP(0, \sigma^2 c(\cdot, \cdot \mid \psi))$$

where

$$c(\mathbf{x}_i, \mathbf{x}_j) = \prod_{\ell=1}^p c(x_{\ell i}, x_{\ell j} \mid \psi_\ell)$$

with $\psi_{\ell} > 0$ being a range parameter.

The most common choice for $c(\cdot, \cdot \mid \psi_{\ell})$ is the power exponential correlation function:

$$c(x_{\ell i}, x_{\ell j} \mid \psi_{\ell}) = \exp\left(-|x_{\ell i}, x_{\ell j}|^{a}/\psi_{\ell}\right)$$

with $0 < a \leq 2$ fixed.

- There are known confounding issues between $\delta(\cdot)$ and θ (e.g. Tuo and Wu, 2015)
- Brynjarsdóttir and O'Hagan (2014) shows how incorporating meaningful prior information on δ may be important
- Plumlee (2017) and Gu and Wang (2018) place more sophisticated priors on δ to ensure the separation between δ and θ
- The goal is usually not δ itself but rather calibration, i.e., estimating θ , and improving prediction

- We focus on this same scenario but with a different goal: help the modeler identify aspects of the computer model which might need improvement
- Variable selection procedure applied to δ(x): each model input will either be deemed active or inert — this is called screening in computer model jargon
- The inert inputs are the ones properly taken into account in $y^{M}(x, \theta)$
- The active inputs are the one that need to examined
- In what follows, y^M(x, θ) is fast to compute; the methodology can be extended to accommodate the situation where an emulator is needed

Screening the discrepancy

• The sampling distribution of the data $\mathbf{y}^F = (y_1, \dots, y_n)^\top$, $y_i = y^F(\mathbf{x}_i)$ is such that, with $\mathbf{f}(\mathbf{\theta}) = (y^M(\mathbf{x}_i, \mathbf{\theta}), i = 1, \dots, n)$

$$m{y} \mid m{\psi}, \sigma^2, \sigma_0^2, m{ heta}, m{f}(m{ heta}) \sim N_n(m{f}(m{ heta}), \sigma^2 m{R} + \sigma_0^2 m{I}_n)$$

where **R** is a $n \times n$ matrix with entries $\mathbf{R} = [c(\mathbf{x}_i, \mathbf{x}_j | \psi)]_{i,j=1,...,n}$ and \mathbf{I}_n denotes the order-*n* identity matrix

As ψ_ℓ → +∞, c(x_{ℓi}, x_{ℓj} | ψ_ℓ) → 1 ∀i, j = 1,..., n and i ≠ j, so x_ℓ does not contribute to **R**.

Linkletter et al. (2006) introduced the following reparametrization to address variable selection of a computer model:

$$\rho_{\ell} = \exp(-(1/2)^{a}/\psi_{\ell})$$

which produces

$$c(x_{\ell i}, x_{\ell j} \mid \rho_{\ell}) = \rho_{\ell}^{2^{a} \mid x_{\ell i} - x_{\ell j} \mid^{a}}$$

with a fixed at some value in the range of (0, 2].

Advantages:

- $0 \le \rho_\ell \le 1$
- x_{ℓ} is inert if $\rho_{\ell} = 1$

Competing models

Let $\gamma = (\gamma_1, \ldots, \gamma_p)$ index all the 2^p models for $\delta(\cdot)$ that result from all possible subsets of $\{x_1, \ldots, x_p\}$ being active:

$$\gamma_{\ell} = \begin{cases} 1, & \text{if } x_{\ell} \text{ is active} \\ 0, & \text{if } x_{\ell} \text{ is intert} \end{cases}$$

Under model \mathcal{M}_{γ} ,

$$\boldsymbol{y} \mid \boldsymbol{\rho}, \sigma^2, \sigma_0^2, \boldsymbol{\theta}, \boldsymbol{f}(\boldsymbol{\theta}) \sim N_n(\boldsymbol{f}(\boldsymbol{\theta}), \sigma^2 \boldsymbol{R}_{\gamma} + \sigma_0^2 \boldsymbol{I}_n)$$

with

$$\boldsymbol{R}_{\boldsymbol{\gamma}} = \left[\prod_{\ell:\gamma_{\ell}=1} c(\boldsymbol{x}_{\ell i}, \boldsymbol{x}_{\ell j} \mid \rho_{\ell})\right]_{i,j=1,\dots,n}$$

that is,

$$\rho_\ell = 1 \Leftrightarrow \gamma_\ell = \mathbf{0}$$

A natural way to quantify model uncertainty is through the posterior model probabilities

 $\pi(\gamma \mid \mathbf{y}) \propto m(\mathbf{y} \mid \gamma) \ \pi(\gamma)$

where $\pi(\gamma) = \mathbb{P}(\mathcal{M}_{\gamma})$ and $\pi(\gamma \mid \textbf{y}) = \mathbb{P}(\mathcal{M}_{\gamma} \mid \textbf{y})$ and

$$m(\mathbf{y} \mid \boldsymbol{\gamma}) = \int N(\mathbf{y} \mid \mathbf{f}(\boldsymbol{\theta}), \sigma^2 \ \mathbf{R}_{\boldsymbol{\gamma}} + \sigma_0^2 \ \mathbf{I}_n)$$
$$\pi(\sigma^2, \sigma_0^2, \boldsymbol{\rho} \mid \boldsymbol{\gamma}) \ \pi(\boldsymbol{\theta}) \ d\sigma^2 \ d\sigma_0^2 \ d\rho \ d\theta$$

with

- $\pi(\theta)$ specified using expert information
- $\pi(\sigma^2, \sigma_0^2, \boldsymbol{\rho} \mid \boldsymbol{\gamma}) = \pi(\sigma^2, \sigma_0^2) \ \pi(\boldsymbol{\rho} \mid \boldsymbol{\gamma})$

Once $\pi(\gamma \mid \mathbf{y})$ is computed for all γ , we can obtain the posterior inclusion probabilities of each input x_{ℓ} :

$$\pi(\mathsf{x}_\ell \mid \mathbf{y}) = \sum_{oldsymbol{\gamma}: \mid oldsymbol{\gamma}_\ell = 1} \ \pi(oldsymbol{\gamma} \mid \mathbf{y})$$

or even of pairs of inputs:

$$\pi(x_{\ell} \lor x_j \mid \boldsymbol{y}) = \pi(x_{\ell} \mid \boldsymbol{y}) + \pi(x_j \mid \boldsymbol{y}) - \sum_{\gamma: \gamma_{\ell} = 1, \gamma_j = 1} \pi(\gamma \mid \boldsymbol{y})$$

These quantities are central to our proposal: **posterior inclusion probability screening**.

We are still missing $\pi(\rho \mid \gamma)$

Savitsky et al. (2011) extends Linkletter et al. (2006) by proposes writing

$$\pi(\rho \mid \boldsymbol{\gamma}) = \prod_{\ell=1}^{p} \left[\gamma_{\ell} \ I_{(0,1)}(\rho_{\ell}) + (1 - \gamma_{\ell}) \ \mathsf{Dir}_{1}(\rho_{\ell}) \right]$$

with Dir_1 representing the Dirac delta at 1.

(Discrete) spike and slab prior of Bayesian variable selection (Mitchell and Beauchamp, 1988):

if a variable is present in the model, its prior is the 'slab', a U(0,1) here; otherwise it's a 'spike', a point mass at 1.

Existing methodology

Additionally

$$\pi(oldsymbol{\gamma}) = \prod_{\ell=1}^p au_\ell^{\gamma_\ell} (1- au_\ell)^{1-\gamma_\ell} \; ,$$

where τ_{ℓ} is a fixed number representing the prior probability that x_{ℓ} is active.

Fairly sophisticated MCMC schemes to sample from the posterior distribution of $(\rho, \sigma^2, \sigma_0^2, \gamma)$. The selection of variables is made by inspecting the posterior on (ρ, γ) .

Existing methodology

Linkletter et al. (2006): set $\tau_{\ell} = \tau$ and integrate out γ from $\pi(\rho, \gamma) = \pi(\rho \mid \gamma) \ \pi(\gamma)$, resulting in

$$\pi(oldsymbol{
ho}) = \prod_{\ell=1}^{
ho} \left[au I_{[0,1]}(
ho_\ell) + (1- au) \mathsf{Dir}_1(
ho_\ell)
ight] \; .$$

Model indicator γ is no longer available so how to declare a variable inert?

Reference distribution variable selection: for a large number of times, say $\mathcal{T}=100$

- add a fictitious input x_{new} to the correlation kernel (along with ρ_{new}) and to the design set
- obtain the posterior distribution of ($\rho,\rho_{\rm new}),$ record the posterior median of $\rho_{\rm new}$

input x_{ℓ} if inert if the posterior median of ρ_{ℓ} exceeds a fixed lower percentile (say, the 10%) of the distribution of the posterior median of ρ_{new} .

Our approach

Continuous spike and slab (George and McCulloch, 1993)

$$\pi(\boldsymbol{\rho} \mid \boldsymbol{\gamma}) = \prod_{\ell=1}^{p} \left[\gamma_{\ell} \ \textit{I}_{(0,1)}(\rho_{\ell}) + (1 - \gamma_{\ell}) \ \textit{Be}(\rho_{\ell} \mid \alpha_{\ell}, 1) \right]$$

where $Be(\cdot \mid \alpha, \beta)$ represents the Beta density with positive shape parameters α and β . α_{ℓ} is a large value, typically larger than 50:

Computational advantages

 $\pi(\gamma \mid \mathbf{y})$ can be written as a function of the Bayes factor

$$B_{\gamma} = rac{m(oldsymbol{y} \mid \gamma)}{m(oldsymbol{y} \mid \gamma = oldsymbol{1})}$$

which is a ratio of normalizing constants.

Ratio importance sampling of Chen and Shao, 1997

$$B_{\gamma} = E_{1} \left[\frac{f(\mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\eta}, \gamma) \pi(\boldsymbol{\rho}, \boldsymbol{\eta} \mid \gamma)}{f(\mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\eta}, \gamma = \mathbf{1}) \pi(\boldsymbol{\rho}, \boldsymbol{\eta} \mid \gamma = \mathbf{1})} \right]$$

$$\approx \frac{1}{M} \sum_{r=1}^{M} \pi(\boldsymbol{\rho}^{(r)} \mid \gamma)$$
(1)

which allows us to estimate all the Bayes factors using a sample from the posterior of the full model $\gamma=\mathbf{1}$

Simulated examples and comparisons

Simulation studies

- We compare RDVS and PIPS in the ability to detect active variables, both when θ is fixed and when θ is calibrated
- Our method exhibits comparable performance but requires only one MCMC sample

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	X ₆	X7	X8
RDVS	q5%	1.00	1.00	0.03	0.03	1.00	1.00	0.03	0.00
	q10%	1.00	1.00	0.07	0.05	1.00	1.00	0.03	0.00
	q15%	1.00	1.00	0.12	0.05	1.00	1.00	0.03	0.00
PIPS	th0.1	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00
	th0.5	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00
	th0.9	1.00	0.98	0.00	0.00	1.00	1.00	0.00	0.00

With θ calibrated:

Table 1: Proportion of detection for a variable to be active when using RDVS and PIPS methods when the parameters θ are calibrated.

We also set idealized scenarios of computer model validation where 100 observations on 5 input variables $\mathbf{x}^{\top} = (x_1, x_2, x_3, x_4, x_5) \in [0, 1]^5$ all simulated from independent uniform distributions except for x_3 and x_5 , which are correlated.

x_1 is incorrectly modeled by the computer model and x_2 has no impact in reality

Figure 1: Boxplots of the probabilities of activeness over the 100 replications.

x_1 is incorrectly modeled by the computer model and x_3 is included instead of x_5

Figure 2: Boxplots of the probabilities of activeness over the 100 replications.

x_1 is incorrectly modeled by the computer model and x_4 was forgoten in the computer model

Figure 3: Boxplots of the probabilities of activeness over the 100 replications.

Photovoltaic plant

12 photovoltaic panels connected together. $f(x, \theta)$ is the instantaneous power delivered by the plant, where

- x = (t, I_g, Id, T_e)[⊤]: t is the time since the beginning of the year, I_g is the global irradiation of the sun, Id is the diffuse irradiation of the sun, and T_e is the ambient temperature.
- θ = (θ₁,...,θ₆)[⊤] but only one is treated as unknown, the module photo-conversion efficiency. A sensitivity analysis has proven the other parameters to be of negligible importance.

A photovoltaic plant computer model

- Instantaneous power delivered by the 12 panels was collected over a period of 2 months every 10 seconds
- $\mathbf{x} = (t, I_g, Id, T_e)^\top$
- The temperature on the panel ${\cal T}_p$ was measured and is tested as a potential active variable in $\delta(\cdot)$
- Considered measurements every 5 minutes
- Methodology is applied to each of the 60 days, between 99 and 178 data per day
- Boxplots of inclusion probabilities over the 60 days

Figure 4: Boxplots of probabilities of activeness of the input variables in the discrepancy computed for the 60 days of data. The column (T_e or T_p) corresponds to the fact that at least one of two temperatures is active.

Discussion

Discussion

- Screening the discrepancy function may provide the practitioner with a better understanding of the flaws of the computer model
- Cast this problem into the more general problem of variable selection for GaSP regression
- PIPS is computationally attractive as it relies on a single MCMC sample
- Posterior inclusion probabilities are easy to interpret
- Moderate p requires exploring the model space as in Garcia-Donato and Martinez-Beneito (2013) — work in progress

References

- BARBILLON, P., FORTE, A. and PAULO, R. (2021). Screening the Discrepancy Function of a Computer Model. arXiv:2109.02726
- BRYNJARSDÓTIR, J. and O'HAGAN, A. (2014). Learning about physical parameters: the importance of model discrepancy. Inverse Problems 30, 114007.
- CHEN, M.-H. and SHAO, Q.-M. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. *The Annals of Statistics* 25, 1563–1594
- GEORGE, E. I. and R. E. McCULLOCH (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association 88, 881–889.
- LINKLETTER, C., BINGHAM, D., HENGARTNER, N., HIGDON, D. and YE, K. Q. (2006). Variable selection for Gaussian process models in computer experiments. *Technometrics* 48 478–490.
- SAVITSKY, T., VANNUCCI, M., and SHA, N. (2011). Variable selection for nonparametric Gaussian process priors: Models and computational strategies. *Statist. Sci.* 26 130–149

Thanks

This work has been partially funded by the Spanish government Grant PID2019-104790GB-I00

