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Motivation
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Specially talking about:

Computer or mathematical models:

Let yM(x,θ) denote the output of a real-valued, deterministic function,
which implements a mathematical model aimed at reproducing a real
phenomenon

• x = (x1 . . . , xp)⊤ are input variables describing controllable or
observable aspects of the system (environmental variables)

• θ = (θ1, . . . , θk)⊤ are model parameters which are unknown in the
context of physical experiments
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Motivating example



Example: A photovoltaic plant (PVP)

• Imagine a photovoltaic plant with 12 panels connected together.

• Its power production may depend on some metheorological
conditions, but which and how?
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Example: A simulator of the PVP

• A mathematical model (MM) has been developed by experts to
mimic the electrical behavior of a PVP:

yM : (x,θ) ∈ R4 × R6 7→ R.

• Metheorological variables x = (t, Ig, Id,Te)T:
• t the UTC time since the beginning of the year,
• Ig the global irradiation of the sun,
• Id the diffuse irradiation of the sun and
• Te the ambient temperature.

• yM(x,θ): the instantaneous power following the MM.
• Carmassi et al. (2019)
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Example: Experimental Data

• Positive power production was recorded: yF.
• Over two months (August and September).
• We just take an observation each 5 min (recorded every 10 sec).
• It is reality yR plus error

yF = yR + ε where ε ∼ N(0, 1
λF ).

• Actual values for the covariates in x were also collected.
• Also, the temperature on the panel is recorded Tp.
• All the input and output data were normalized in [0, 1]
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Example: Experimental Data
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Example: Goal

• Understand if the MM yM(x,θ) is good enough to model reality yR:
• If the effect of metheorological covariates is well modelled through

yM.
• If the temperature of the panel (not in the model) also affects the

result.

• Notice that we just have field data yF.
• In the world of MMs this process is usually known as screening.
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Statistical Framework



Statistical framework

Field experiments

Let x1, . . . , xn the configurations / observed values at which the field
experiments are conducted;

That is,
xi = (x1i, . . . , xp,i)

⊤

denotes the values of the input variables that have been set for the ith
experiment (or that will be observed as part of that experiment, if
corresponding to environmental variables)

Following Kennedy and O’Hagan (2001), we model the field data as

yF(xi) = yM(xi,θ) + δ(xi) + εi
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Model discrepancy

yF(xi) = yM(xi,θ) + δ(xi) + εi

• εi are independent N(0, σ2
0) random variables which represent

measurement error
• θ denotes the unknown value of the vector of model parameters
• δ(xi) denotes the discrepancy function and is meant to account for

model inadequacy
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Gaussian process prior

We place a Gaussian process prior on δ(·):

δ(·) | σ2,ψ ∼ GP(0, σ2c(·, · | ψ))

where
c(xi, xj) =

p∏
ℓ=1

c(xℓi, xℓj | ψℓ)

with ψℓ > 0 being a range parameter.

The most common choice for c(·, · | ψℓ) is the power exponential
correlation function:

c(xℓi, xℓj | ψℓ) = exp (−|xℓi, xℓj|a/ψℓ)

with 0 < a ≤ 2 fixed.
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Remarks

• There are known confounding issues between δ(·) and θ (e.g. Tuo
and Wu, 2015)

• Brynjarsdóttir and O’Hagan (2014) shows how incorporating
meaningful prior information on δ may be important

• Plumlee (2017) and Gu and Wang (2018) place more sophisticated
priors on δ to ensure the separation between δ and θ

• The goal is usually not δ itself but rather calibration, i.e., estimating
θ, and improving prediction
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Our approach

• We focus on this same scenario but with a different goal: help the
modeler identify aspects of the computer model which might need
improvement

• Variable selection procedure applied to δ(x): each model input will
either be deemed active or inert — this is called screening in
computer model jargon

• The inert inputs are the ones properly taken into account in yM(x,θ)
• The active inputs are the one that need to examined
• In what follows, yM(x,θ) is fast to compute; the methodology can be

extended to accommodate the situation where an emulator is needed
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Screening the discrepancy



Variable selection for δ

• The sampling distribution of the data yF = (y1, . . . , yn)⊤, yi = yF(xi)

is such that, with f(θ) = (yM(xi,θ), i = 1, . . . , n)

y | ψ, σ2, σ2
0 ,θ, f(θ) ∼ Nn(f(θ), σ2R + σ2

0 In)

where R is a n × n matrix with entries R = [c(xi, xj | ψ)]i,j=1,...,n and
In denotes the order-n identity matrix

• As ψℓ → +∞, c(xℓi, xℓj | ψℓ) → 1 ∀i, j = 1, . . . , n and i 6= j, so xℓ
does not contribute to R.
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Linkletter’s reparametrization

Linkletter et al. (2006) introduced the following reparametrization to
address variable selection of a computer model:

ρℓ = exp(−(1/2)a/ψℓ)

which produces
c(xℓi, xℓj | ρℓ) = ρ

2a|xℓi−xℓj|a
ℓ

with a fixed at some value in the range of (0, 2].

Advantages:

• 0 ≤ ρℓ ≤ 1
• xℓ is inert if ρℓ = 1
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Competing models

Let γ = (γ1, . . . , γp) index all the 2p models for δ(·) that result from all
possible subsets of {x1, . . . , xp} being active:

γℓ =

{
1, if xℓ is active
0, if xℓ is intert

Under model Mγ ,

y | ρ, σ2, σ2
0 ,θ, f(θ) ∼ Nn(f(θ), σ2Rγ + σ2

0 In)

with

Rγ =

 ∏
ℓ:γℓ=1

c(xℓi, xℓj | ρℓ)


i,j=1,...,n

that is,
ρℓ = 1 ⇔ γℓ = 0
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Posterior model probabilities

A natural way to quantify model uncertainty is through the posterior
model probabilities

π(γ | y) ∝ m(y | γ) π(γ)

where π(γ) = P(Mγ) and π(γ | y) = P(Mγ | y) and

m(y | γ) =
∫

N(y | f(θ), σ2 Rγ + σ2
0 In)

π(σ2, σ2
0 ,ρ | γ) π(θ) dσ2 dσ2

0 dρ dθ .

with

• π(θ) specified using expert information
• π(σ2, σ2

0 ,ρ | γ) = π(σ2, σ2
0) π(ρ | γ)
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PIPS

Once π(γ | y) is computed for all γ, we can obtain the posterior inclusion
probabilities of each input xℓ:

π(xℓ | y) =
∑

γ: γℓ=1
π(γ | y)

or even of pairs of inputs:

π(xℓ ∨ xj | y) = π(xℓ | y) + π(xj | y)−
∑

γ: γℓ=1,γj=1
π(γ | y)

These quantities are central to our proposal: posterior inclusion
probability screening.
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But...

We are still missing π(ρ | γ)
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Existing methodology

Savitsky et al. (2011) extends Linkletter et al. (2006) by proposes writing

π(ρ | γ) =
p∏

ℓ=1

[
γℓ I(0,1)(ρℓ) + (1 − γℓ) Dir1(ρℓ)

]
with Dir1 representing the Dirac delta at 1.

(Discrete) spike and slab prior of Bayesian variable selection (Mitchell
and Beauchamp, 1988):

if a variable is present in the model, its prior is the ‘slab’, a U(0, 1)
here; otherwise it’s a ‘spike’, a point mass at 1.
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Existing methodology

Additionally

π(γ) =

p∏
ℓ=1

τℓ
γℓ(1 − τℓ)

1−γℓ ,

where τℓ is a fixed number representing the prior probability that xℓ is
active.

Fairly sophisticated MCMC schemes to sample from the posterior
distribution of (ρ, σ2, σ2

0 ,γ). The selection of variables is made by
inspecting the posterior on (ρ,γ).
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Existing methodology

Linkletter et al. (2006): set τℓ = τ and integrate out γ from
π(ρ, γ) = π(ρ | γ) π(γ), resulting in

π(ρ) =

p∏
ℓ=1

[
τ I[0,1](ρℓ) + (1 − τ)Dir1(ρℓ)

]
.

Model indicator γ is no longer available so how to declare a variable inert?
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Existing methodology

Reference distribution variable selection: for a large number of times, say
T = 100

• add a fictitious input xnew to the correlation kernel (along with ρnew)
and to the design set

• obtain the posterior distribution of (ρ, ρnew), record the posterior
median of ρnew

input xℓ if inert if the posterior median of ρℓ exceeds a fixed lower
percentile (say, the 10%) of the distribution of the posterior median of
ρnew.
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Our approach

Continuous spike and slab (George and McCulloch, 1993)

π(ρ | γ) =
p∏

ℓ=1

[
γℓ I(0,1)(ρℓ) + (1 − γℓ) Be(ρℓ | αℓ, 1)

]
where Be(· | α, β) represents the Beta density with positive shape
parameters α and β. αℓ is a large value, typically larger than 50:
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Computational advantages



Computation

π(γ | y) can be written as a function of the Bayes factor

Bγ =
m(y | γ)

m(y | γ = 1)

which is a ratio of normalizing constants.

Ratio importance sampling of Chen and Shao, 1997

Bγ = E1

[
f(y | ρ,η, γ) π(ρ,η | γ)

f(y | ρ,η, γ = 1) π(ρ,η | γ = 1)

]
≈ 1

M

M∑
r=1

π(ρ(r) | γ)
(1)

which allows us to estimate all the Bayes factors using a sample from the
posterior of the full model γ = 1
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Simulated examples and
comparisons



Simulation studies

• We compare RDVS and PIPS in the ability to detect active
variables, both when θ is fixed and when θ is calibrated

• Our method exhibits comparable performance but requires only one
MCMC sample
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With θ calibrated:

x1 x2 x3 x4 x5 x6 x7 x8

RDVS
q5% 1.00 1.00 0.03 0.03 1.00 1.00 0.03 0.00
q10% 1.00 1.00 0.07 0.05 1.00 1.00 0.03 0.00
q15% 1.00 1.00 0.12 0.05 1.00 1.00 0.03 0.00

PIPS
th0.1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
th0.5 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
th0.9 1.00 0.98 0.00 0.00 1.00 1.00 0.00 0.00

Table 1: Proportion of detection for a variable to be active when using RDVS
and PIPS methods when the parameters θ are calibrated.
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Simulation studies

We also set idealized scenarios of computer model validation where 100
observations on 5 input variables x⊤ = (x1, x2, x3, x4, x5) ∈ [0, 1]5 all
simulated from independent uniform distributions except for x3 and x5,
which are correlated.
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x1 is incorrectly modeled by the computer model and x2 has no
impact in reality
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Figure 1: Boxplots of the probabilities of activeness over the 100 replications.
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x1 is incorrectly modeled by the computer model and x3 is in-
cluded instead of x5
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Figure 2: Boxplots of the probabilities of activeness over the 100 replications.

30



x1 is incorrectly modeled by the computer model and x4 was
forgoten in the computer model

0.00

0.25

0.50

0.75

1.00

X1 X2 X3 X4 X5
input

pr
ob

 o
f a

ct
iv

en
es

s

0.00

0.25

0.50

0.75

1.00

X1 X2 X3 X4 X5
input

pr
ob

 o
f a

ct
iv

en
es

s

Figure 3: Boxplots of the probabilities of activeness over the 100 replications.
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Photovoltaic plant



Example: Photovoltaic plant

12 photovoltaic panels connected together. f(x,θ) is the instantaneous
power delivered by the plant, where

• x = (t, Ig, Id,Te)⊤: t is the time since the beginning of the year, Ig is
the global irradiation of the sun, Id is the diffuse irradiation of the
sun, and Te is the ambient temperature.

• θ = (θ1, . . . , θ6)⊤ but only one is treated as unknown, the module
photo-conversion efficiency. A sensitivity analysis has proven the
other parameters to be of negligible importance.
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A photovoltaic plant computer model

• Instantaneous power delivered by the 12 panels was collected over a
period of 2 months every 10 seconds

• x = (t, Ig, Id,Te)⊤

• The temperature on the panel Tp was measured and is tested as a
potential active variable in δ(·)

• Considered measurements every 5 minutes
• Methodology is applied to each of the 60 days, between 99 and 178

data per day
• Boxplots of inclusion probabilities over the 60 days
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Figure 4: Boxplots of probabilities of activeness of the input variables in the
discrepancy computed for the 60 days of data. The column (Te or Tp)

corresponds to the fact that at least one of two temperatures is active.
34



Discussion



Discussion

• Screening the discrepancy function may provide the practitioner with
a better understanding of the flaws of the computer model

• Cast this problem into the more general problem of variable selection
for GaSP regression

• PIPS is computationally attractive as it relies on a single MCMC
sample

• Posterior inclusion probabilities are easy to interpret
• Moderate p requires exploring the model space as in Garcia-Donato

and Martinez-Beneito (2013) — work in progress

35



References

• BARBILLON, P., FORTE, A. and PAULO, R. (2021). Screening the
Discrepancy Function of a Computer Model. arXiv:2109.02726

• BRYNJARSDÓTIR, J. and O’HAGAN, A. (2014). Learning about
physical parameters: the importance of model discrepancy. Inverse
Problems 30, 114007.

• CHEN, M.-H. and SHAO, Q.-M. (1997). On Monte Carlo methods for
estimating ratios of normalizing constants. The Annals of Statistics 25,
1563–1594

• GEORGE, E. I. and R. E. McCULLOCH (1993). Variable selection via
Gibbs sampling. Journal of the American Statistical Association 88,
881–-889.

• LINKLETTER, C., BINGHAM, D., HENGARTNER, N., HIGDON, D. and
YE, K. Q. (2006). Variable selection for Gaussian process models in
computer experiments. Technometrics 48 478–490.

• SAVITSKY, T., VANNUCCI, M., and SHA, N. (2011). Variable selection
for nonparametric Gaussian process priors: Models and computational
strategies. Statist. Sci. 26 130–149

36



Thanks

This work has been partially funded by the Spanish government Grant
PID2019-104790GB-I00

37


	Motivation
	Motivating example
	Statistical Framework
	Screening the discrepancy
	Computational advantages
	Simulated examples and comparisons
	Photovoltaic plant
	Discussion

